Journals
  Publication Years
  Keywords
Search within results Open Search
Please wait a minute...
For Selected: Toggle Thumbnails
Network representation learning based on autoencoder with optimized graph structure
Kun FU, Yuhan HAO, Minglei SUN, Yinghua LIU
Journal of Computer Applications    2023, 43 (10): 3054-3061.   DOI: 10.11772/j.issn.1001-9081.2022101494
Abstract254)   HTML22)    PDF (2515KB)(243)       Save

The aim of Network Representation Learning (NRL) is to learn the potential and low-dimensional representation of network vertices, and the obtained representation is applied for downstream network analysis tasks. The existing NRL algorithms using autoencoder extract information about node attributes insufficiently and are easy to generate information bias, which affects the learning effect. Aiming at these problems, a Network Representation learning model based on Autoencoder with optimized Graph Structure (NR-AGS) was proposed to improve the accuracy by optimizing the graph structure. Firstly, the structure and attribute information were fused to generate the joint transition matrix, thereby forming the high-dimensional representation. Secondly, the low-dimensional embedded representation was learnt by an autoencoder. Finally, the deep embedded clustering algorithm was introduced during learning to form a self-supervision mechanism in the processes of autoencoder training and the category distribution division of nodes. At the same time, the improved Maximum Mean Discrepancy (MMD) algorithm was used to reduce the gap between distribution of the learnt low-dimensional embedded representation and distribution of the original data. Besides, in the proposed model, the reconstruction loss of the autoencoder, the deep embedded clustering loss and the improved MMD loss were used to optimize the network jointly. NR-AGS was applied to the learning of three real datasets, and the obtained low-dimensional representation was used for downstream tasks such as node classification and node clustering. Experimental results show that compared with the deep graph representation model DNGR (Deep Neural networks for Graph Representations), NR-AGS improves the Micro-F1 score by 7.2, 13.5 and 8.2 percentage points at least and respectively on Cora, Citeseer and Wiki datasets. It can be seen that NR-AGS can improve the learning effect of NRL effectively.

Table and Figures | Reference | Related Articles | Metrics
Topology optimization based graph convolutional network combining with global structural information
Kun FU, Jinhui GAO, Xiaomeng ZHAO, Jianing LI
Journal of Computer Applications    2022, 42 (2): 357-364.   DOI: 10.11772/j.issn.1001-9081.2021030380
Abstract502)   HTML31)    PDF (1079KB)(300)       Save

As a kind of Graph Convolutional Neural Network (GCNN), Topology Optimization based Graph Convolutional Network (TOGCN) model adopts auxiliary information in the network to optimize topological structure of the network, thereby helping to reflect the relational degrees between the nodes. However, TOGCN model only focuses on the association between local nodes, and not enough on the potential global structure information. Fusing global feature information, the model will help to improve performance as well as its robustness in dealing with incomplete information. A Global structure information Enhanced-TOGCN (GE-TOGCN) model was proposed, the attributes of neighboring nodes were utilized to optimize the topological graph, and the class information was regarded as the global structure information to maintain intra-class aggregation and inter-class separation. Firstly, the center vector of each class was calculated by the labeled nodes, then some unlabeled nodes were selected to update these class center vectors. Finally, all the nodes were assigned to the corresponding class according to their similarity to class center vectors, and a semi-supervised loss function was adopted to optimize the class center vector of each class and the final representation vectors of the nodes. On Cora and Citeseer datasets, node classification task and node visualization task were performed by using the obtained node representation vectors with the loss of label information. Experimental results show that compared with Graph Convolutional Network (GCN), Graph Learning-Convolutional Network (GLCN) and other models, GE-TOGCN has the classification accuracy increased by 1.2-12.0 percentage points on Cora dataset, and the classification accuracy increased by 0.9-9.9 percentage points on Citeseer dataset. In node visualization task, the proposed model has higher degree of intra-class node aggregation and more obvious boundaries between class clusters. In summary, the fusion of class global information can reduce the negative influence of label information loss on learning effects of the model, and the node representations obtained by the proposed model have better performance in downstream tasks.

Table and Figures | Reference | Related Articles | Metrics